An acoustic wave equation for pure P wave in 2D TTI media

Ge Zhan¹, Reynam Pestana² and Paul Stoffa³

¹KAUST, Thuwal, Saudi Arabia

²CPGG/UFBA and INCT-GP/CNPq, Salvador, Bahia, Brazil

³UT Austin, Austin, Texas, USA.

12th CISBGF 15-18 August 2011

Rio de Janeiro, Brazil

Introduction

Vertical Transversely Isotropic (VTI) and Tilted Transversely Isotropic (TTI)

イロト イロト イヨト イヨト

Tilted Transversely Isotropic (TTI)

Introduction

Global (vertical) symmetry assumption

Local (tilted) symmetry assumption (more realistic)

◆□▶ ◆圖▶ ◆注▶ ◆注▶

VTI RTM image - The sub-salt image is incoherent and defocused.

(From Huang et al., 2009)

TTI RTM image - Continuous subsalt sediments and clear terminations.

The 3D TTI coupled equations - Current practice

The 3D TTI coupled equations (Fletcher, 2008; Zhang and Zhang, 2008) ($v_s = 0.0$)

$$\begin{cases} H_1 = \left[\sin\theta\cos\phi\partial_x + \sin\theta\sin\phi\partial_y + \cos\theta\partial_z\right]^2 \\ H_2 = \left(\partial_x^2 + \partial_y^2 + \partial_z^2\right) - H_1 \end{cases}$$

where p is the pressure wavefield, q is an introduced auxiliary wavefield, ϵ and δ are Thomson's parameter; θ and ϕ are the dipangle and azimuth angle of the symmetry axis.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

BP 2007 TTI model - parameters

BP 2007 TTI model

Dataset Benchmark - Modeling

INCT-GP

INCT-GP

INCT-GP

Tilte Angle Variation

grad(**θ**)

・ロト ・回ト ・ヨト

Ξ.

Snapshots

(a) Stable TTI snapshot at t=8 sec

RTM images - Old methods

RTM images - Old methods

The equations of P and SV wave phase velocity gives (Pestana et al., 2011 - 12th CISBGf)

$$\begin{cases} \omega^2 = v_{\rho 0}^2 \left[(1+2\epsilon) k_r^2 + k_z^2 - \frac{2(\epsilon-\delta) k_r^2 k_z^2}{k_z^2 + F k_r^2} \right] \\ \omega^2 = v_{\rho 0}^2 \left[\frac{v_{s 0}^2}{v_{\rho 0}^2} (k_r^2 + k_z^2) + \frac{2(\epsilon-\delta) k_r^2 k_z^2}{k_z^2 + F k_r^2} \right] \end{cases}$$

where $F = 1 + \frac{2\epsilon}{f}$. For simplicity, we proceed with a choice F = 1.

Equations hold for TI media with a vertical symmetry axis (VTI).

Decoupled wave equations equation for TTI media

Dispersion relations for TTI media with arbitrary orientation of symmetry axis can be deduced from VTI equations through a variable change (3D rotation).

The wavenumber operators in the rotated coordinates system write

$$\begin{bmatrix} \hat{k}_{x} \\ \hat{k}_{y} \\ \hat{k}_{z} \end{bmatrix} = \begin{bmatrix} \cos\theta\cos\phi & \cos\theta\sin\phi & \sin\theta \\ -\sin\phi & \cos\phi & 0 \\ -\sin\theta\cos\phi & -\sin\theta\sin\phi & \cos\theta \end{bmatrix} \begin{bmatrix} k_{x} \\ k_{y} \\ k_{z} \end{bmatrix}$$

Then we have:

$$\begin{pmatrix} \hat{k}_r^2 &= k_r^2 - \sin^2 \theta (\cos^2 \phi k_x^2 + \sin^2 \phi k_y^2 - k_z^2 + \sin 2 \phi k_x k_y) \\ &+ \sin 2 \theta (\cos \phi k_x k_z + \sin \phi k_y k_z) \end{pmatrix}$$

$$\hat{k}_z^2 &= k_z^2 - \sin^2 \theta (\cos^2 \phi k_x^2 + \sin^2 \phi k_y^2 - k_z^2 + \sin 2 \phi k_x k_y) \\ &- \sin 2 \theta (\cos \phi k_x k_z + \sin \phi k_y k_z) \end{pmatrix}$$

2-D case version for P wave:

$$\begin{aligned} \int \frac{1}{v_{\rho 0}^2} \frac{\partial^2 P}{\partial t^2} &= -\left\{k_x^2 + k_z^2 \\ &+ (2\epsilon\cos^4\theta + 2\delta\sin^2\theta\cos^2\theta)\frac{k_x^4}{k_x^2 + k_z^2} + (2\epsilon\sin^4\theta + 2\delta\sin^2\theta\cos^2\theta)\frac{k_x^4}{k_x^2 + k_z^2} \\ &+ (-4\epsilon\sin2\theta\cos^2\theta + \delta\sin4\theta)\frac{k_x^3k_z}{k_x^2 + k_z^2} + (-4\epsilon\sin2\theta\sin^2\theta - \delta\sin4\theta)\frac{k_x^4k_z^2}{k_x^2 + k_z^2} \\ &+ (3\epsilon\sin^22\theta + \delta\cos^22\theta + \delta\cos4\delta)\frac{k_x^2k_z^2}{k_x^2 + k_z^2}\right\}P\end{aligned}$$

and SV wave:

$$\begin{cases} \frac{1}{v_{\rho 0}^2} \frac{\partial^2 P_{SV}}{\partial t^2} &= -\left\{ \frac{v_{\rho 0}^2}{v_{s 0}^2} (k_x^2 + k_z^2) + (\epsilon - \delta) \{2 \sin^2 \theta \cos^2 \theta \frac{k_x^4}{k_x^2 + k_z^2} \\ &+ 2 \sin^2 \theta \cos^2 \theta \frac{k_z^4}{k_x^2 + k_z^2} + \sin 4\theta \frac{k_x^3 k_z}{k_x^2 + k_z^2} + (-\sin 4\theta) \frac{k_x k_z^3}{k_x^2 + k_z^2} \\ &+ (\cos^2 2\theta + \cos 4\theta) \frac{k_x^2 k_z^2}{k_x^2 + k_z^2} \} \right\} P_{SV} \end{cases}$$

◆□▶ ◆圖▶ ◆注▶ ◆注▶

Rapid expansion method

The solution of the P pure wave equation can be written as (Pestana and Stoffa, 2010)

$$p(t + \Delta t) = -p(t - \Delta t) + 2\cos(L\Delta t)p(t)$$

where the pseudo-differential operator is defined as

$$\begin{cases} -L^2 = -\left\{k_x^2 + k_z^2\right. \\ + \left(2\epsilon\cos^4\theta + 2\delta\sin^2\theta\cos^2\theta\right)\frac{k_x^4}{k_x^2 + k_z^2} + \left(2\epsilon\sin^4\theta + 2\delta\sin^2\theta\cos^2\theta\right)\frac{k_x^4}{k_x^2 + k_z^2} \\ + \left(-4\epsilon\sin2\theta\cos^2\theta + \delta\sin4\theta\right)\frac{k_x^3k_z}{k_x^2 + k_z^2} + \left(-4\epsilon\sin2\theta\sin^2\theta - \delta\sin4\theta\right)\frac{k_xk_z^3}{k_x^2 + k_z^2} \\ + \left(3\epsilon\sin^22\theta + \delta\cos^22\theta + \delta\cos4\delta\right)\frac{k_x^2k_z^2}{k_x^2 + k_z^2}\right\}P$$

The cosine function is approximated by

The cosine function is approximated by

$$cos(L\Delta t) = \sum_{k=0}^{M} C_{2k} J_{2k} (R\Delta t) Q_{2k} (iL/R)$$
 $M > R\Delta t$

For anisotropic the value of R for 2D case is given by $R = \pi v_{max} (1 + |\epsilon|_{max}) \sqrt{1/\Delta x^2 + 1/\Delta z^2}$

Wavefield Snapshots

Anisotropic parameters - 2D wedge model

Wavefield snapshots - 2D wedge model

Wavefield snapshots - 2D wedge model

Wavefield snapshots - 2D wedge model

2D BP TTI model (partial region)

Wavefield snapshots in the 2D BP TTI model

with a finite V_{s0} wave velocity (c) Pure P wave (d): $\vee \langle B \rangle \vee \langle B \rangle \vee \langle B \rangle$

RTM images - New method

VTI REM of the partial BP model

RTM images - New method

TTI REM of the partial BP model

▲ロト ▲屈卜 ▲臣卜 ▲臣卜 三臣 - の久

RTM images - Zoom

INCT-GP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusions

- We present an approach for modeling and migration in an acoustic TTI media using decoupled P wave and SV wave equations.
- Compared with TTI coupled wave equations published in the geophysics literature, the proposed decoupled equations are stable.
- To avoid numerical dispersion and produce high quality images, the rapid expansion method (REM) and pseudo-spectral method are employed for numerical implementation.
- To make this RTM computation possible high speed and parallel computers are needed. (For examples, GPU clusters)

ヘロト ヘロト ヘビト ヘビト

- We present an approach for modeling and migration in an acoustic TTI media using decoupled P wave and SV wave equations.
- Compared with TTI coupled wave equations published in the geophysics literature, the proposed decoupled equations are stable.
- To avoid numerical dispersion and produce high quality images, the rapid expansion method (REM) and pseudo-spectral method are employed for numerical implementation.
- To make this RTM computation possible high speed and parallel computers are needed. (For examples, GPU clusters)

(日) (四) (日) (日) (日)

- We present an approach for modeling and migration in an acoustic TTI media using decoupled P wave and SV wave equations.
- Compared with TTI coupled wave equations published in the geophysics literature, the proposed decoupled equations are stable.
- To avoid numerical dispersion and produce high quality images, the rapid expansion method (REM) and pseudo-spectral method are employed for numerical implementation.
- To make this RTM computation possible high speed and parallel computers are needed. (For examples, GPU clusters) INT.

(日) (四) (日) (日) (日)

- We present an approach for modeling and migration in an acoustic TTI media using decoupled P wave and SV wave equations.
- Compared with TTI coupled wave equations published in the geophysics literature, the proposed decoupled equations are stable.
- To avoid numerical dispersion and produce high quality images, the rapid expansion method (REM) and pseudo-spectral method are employed for numerical implementation.
- To make this RTM computation possible high speed and parallel computers are needed. (For examples, GPU clusters) (INTRODUCTION CONTINUES)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 The authors for funding from the King Abdullah University of Science and Technology (KAUST).

■ Pestana for funding from CNPq and INCT-GP/CNPq.

BP for making the 2007 2D TTI benchmark dataset and velocity model available.

